Закон преломления света

Опубликовано: 17.10.2018

В современном мире электронная техника развивается семимильными шагами. Каждый день появляется что-то новое, и это не только небольшие улучшения уже существующих моделей, но и результаты применения инновационных технологий, позволяющих в разы улучшить характеристики.

Не отстает от электронной техники и приборостроительная отрасль – ведь чтобы разработать и выпустить на рынок новые устройства, их необходимо тщательно протестировать, как на этапе проектирования и разработки, так и на этапе производства. Появляются новая измерительная техника и новые методы измерения, а, следовательно – новые термины и понятия.

Для тех, кто часто сталкивается с непонятными сокращениями, аббревиатурами и терминами и хотел бы глубже понимать их значения, и предназначена эта рубрика.

Подробнее...

Преломле́ние ( рефра́кция ) — изменение направления распространения волн электромагнитного излучения, возникающее на границе раздела двух прозрачных для этих волн сред или в толще среды с непрерывно изменяющимися свойствами.

Преломление света на границе двух сред даёт парадоксальный зрительный эффект: пересекающие границу раздела прямые предметы в более плотной среде выглядят образующими больший угол с нормалью к границе раздела (то есть преломлёнными «вверх»); в то время как луч, входящий в более плотную среду, распространяется в ней под меньшим углом к нормали (то есть преломляется «вниз»). Этот же оптический эффект приводит к ошибкам в визуальном определении глубины водоёма, которая всегда кажется меньше, чем есть на самом деле.

Преломление света в атмосфере Земли приводит к тому, что мы наблюдаем восход Солнца несколько раньше, а закат несколько позже, чем это имело бы место при отсутствии атмосферы. По той же причине вблизи горизонта диск Солнца выглядит заметно сплющенным вдоль вертикали.

Физика явления

Измерение углов падения и преломления луча света

Построение преломлённой волны с помощью принципа Гюйгенса — Френеля

Преломление волновых фронтов на поверхности раздела двух сред

Преломление наблюдается, когда фазовые скорости электромагнитных волн в контактирующих средах различаются. В этом случае полное значение скорости волны должно быть разным по разные стороны границы раздела сред. Однако если проследить движение, например, гребня волны вдоль границы раздела — то соответствующая скорость должна быть одинаковой для обеих «половинок» волны (поскольку при пересечении границы максимум волны остается максимумом, и наоборот; то есть можно говорить о синхронизации падающей и прошедшей волны во всех точках границы, см. верхний рисунок). Из простого геометрического построения получаем, что скорость движения точки пересечения гребня с линией, наклонённой к направлению распространения волны под углом , будет равна , где  — скорость распространения волны.

Это ясно из того, что, пока гребень волны пройдёт в направлении своего распространения (то есть перпендикулярно гребню) расстояние, равное катету треугольника, точка пересечения гребня с границей пройдёт расстояние, равное гипотенузе, а отношение этих расстояний, равное синусу угла, и есть отношение скоростей.

Тогда, приравняв скорости вдоль границы раздела для падающей и прошедшей волн, получим , что эквивалентно закону Снелла, поскольку показатель преломления определяется как отношение скорости электромагнитного излучения в вакууме к скорости электромагнитного излучения в среде: .

В итоге на границе раздела двух сред наблюдается преломление луча, качественно состоящее в том, что углы к нормали к границе раздела сред для падающего и преломлённого луча отличаются друг от друга, то есть ход луча вместо прямого становится ломаным — луч преломляется.

Заметим, что практически тождественным способом вывода закона Снелла является построение прошедшей волны с помощью принципа Гюйгенса — Френеля (см. рисунок).

В изотропной среде для синусоидальной волны, характеризуемой частотой и волновым вектором, перпендикулярным направлению распространения волны, соображения, что составляющая волнового вектора, параллельная границе раздела, должна быть одинаковой до и после прохождения этой границы, приводят к такому же виду закона преломления.

Дополнительно стоит отметить, что волновой вектор фотона равен вектору его импульса, делённому на постоянную Планка, и это дает возможность естественной физической интерпретации закона Снелла как сохранения проекции импульса фотона на пересекаемую им границу раздела сред.

Полное преломление

Тесно связано с преломлением такое явление, как отражение от границы прозрачных сред. В каком-то смысле это две стороны одного и того же явления. Так, например, явление полного внутреннего отражения связано с тем, что преломлённой волны, которая бы удовлетворяла закону Снелла, для некоторых углов падения не находится, и волне приходится полностью отражаться.

Если вертикально поляризованная волна падает на поверхность раздела под углом Брюстера, то будет наблюдаться эффект полного преломления — отражённая волна будет отсутствовать.

Преломление в технике и научных приборах

Явление преломления лежит в основе работы телескопов-рефракторов (научного и практического назначения, в том числе подавляющей доли зрительных труб, биноклей и других приборов наблюдения), объективов фото-, кино- и телекамер, микроскопов, увеличительных стекол, очков, проекционных приборов, приемников и передатчиков оптических сигналов, концентраторов мощных световых пучков, призменных спектроскопов и спектрометров, призменных монохроматоров, и многих других оптических приборов, содержащих линзы и/или призмы. Её учет необходим при расчете работы почти всех оптических приборов. Всё это относится к разным диапазонам электромагнитного спектра.

В акустике преломление звука особенно важно учитывать при исследовании распространения звука в неоднородной среде и, конечно, на границе разных сред.

Может быть важным в технике и учет преломления волн другой природы, например, волн на воде, различных волн в активных средах итд.

Преломление в обычной жизни

Двойная радуга - одно из самых красивых явлений, связанных с рефракцией.

Преломление света в разных жидкостях и стекле

Соломинка в жидкости кажется сломанной из-за разных показателей преломления света в воздухе и в жидкости.

Преломления света, проходящего через стекло

Преломления встречается на каждом шагу и воспринимается как совершенно обыденное явление: можно видеть как ложка, которая находится в чашке с чаем, будет «переломлена» на границе воды и воздуха. Тут уместно отметить, что данное наблюдение при некритическом восприятии даёт неверное представление о знаке эффекта: кажущееся переломление ложки происходит в обратную сторону реальному преломлению лучей света.

Преломление и отражение света в каплях воды порождает радугу.

Многократным преломлением (отчасти и отражением) в мелких прозрачных элементах структуры (снежинках, волокнах бумаги, пузырьках) объясняются свойства матовых (не зеркальных) отражающих поверхностей, таких как белый снег, бумага, белая пена.

Рефракцией в атмосфере объясняются многие интересные эффекты. Например, при определённых метеорологических условиях Земля (с небольшой высоты) может выглядеть как вогнутая чаша (а не часть выпуклого шара).

Закон Снеллиуса

Закон Снеллиуса (также Снелля или Снелла ) описывает преломление света на границе двух прозрачных сред. Также применим и для описания преломления волн другой природы, например звуковых.

 

Закон был открыт в начале XVII века голландским математиком Виллебрордом Снеллиусом. Несколько позднее опубликован (и, возможно, независимо переоткрыт) Рене Декартом.

Угол падения света на поверхность связан с углом преломления соотношением

Здесь:

Если , имеет место полное внутреннее отражение (преломлённый луч отсутствует, падающий луч полностью отражается от границы раздела сред)

Следует заметить, что в случае анизотропных сред (например, кристаллов с низкой симметрией или механически деформированных твердых тел) преломление подчиняется несколько более сложному закону. При этом возможна зависимость направления преломленного луча не только от направления падающего, но и от его поляризации. Также следует заметить, что закон Снеллиуса не описывает соотношение интенсивностей и поляризаций падающего, преломленного и отраженного лучей. Закон Снеллиуса хорошо определен для случая «геометрической оптики», то есть в случае, когда длина волны достаточно мала по сравнению с размерами преломляющей поверхности, вообще же говоря работает в рамках приближенного описания, каковым и является геометрическая оптика.

Векторная формула

Пусть и лучевые векторы падающего и преломленного световых лучей, то есть векторы, указывающие направления лучей и имеющие длины и , а единичный нормальный вектор к преломляющей поверхности в точке преломления. Тогда

Источник: ru.wikipedia.org

Расчет высокопрочных болтов на растяжение

Особенности расчета на прочность элементов, ослабленных отверстиями под высокопрочные болты:
При статической нагрузке, если ослабление менее 15 °/о, расчет ведется по площади брутто А, а если ослабление больше 15 %—по условной площади Лусл = 1,18 Ап.

Монтажные стыки

Монтажные стыки делают при невозможности транспортирования элементов в целом виде.
Монтажные стыки для удобства сборки устраивают универсальными: все прокатные элементы балки соединяют в одном сечении.

Проверка прочности

Проверка прочности сечения на опоре балки по касательным напряжениям:
Балочной клеткой называется система перекрестных балок, предназначенная для опирания настила при устройстве перекрытия над какой-либо площадью.
Copyright © basketballlife.ru - Материалы для строительства
rss